Soi c\u1ea7u Pascal l\u00e0 g\u00ec?<\/h2>\n
Soi c\u1ea7u Pascal<\/strong> l\u00e0 m\u1ed9t ph\u01b0\u01a1ng ph\u00e1p b\u1eaft l\u00f4 d\u1ef1a v\u00e0o quy lu\u1eadt c\u1ee7a tam gi\u00e1c Pascal. T\u1eeb \u0111\u00e2y ng\u01b0\u1eddi ch\u01a1i s\u1ebd \u00e1p d\u1ee5ng c\u00f4ng th\u1ee9c c\u1ed9ng 2 s\u1ed1 li\u00ean ti\u1ebfp g\u1ea7n nhau . \u0110\u1ec3 t\u1ea1o th\u00e0nh m\u1ed9t d\u00e3y s\u1ed1 m\u1edbi v\u1edbi \u0111\u1ed9 d\u00e0i b\u00e9 h\u01a1n 1 \u0111\u01a1n v\u1ecb cho \u0111\u1ebfn khi ch\u1ec9 c\u00f2n 2 con s\u1ed1 cu\u1ed1i c\u00f9ng v\u00e0 \u0111\u00e2y ch\u00ednh l\u00e0 con b\u1ea1ch th\u1ee7 l\u00f4 c\u1ea7n t\u00ecm.<\/p>\n Con s\u1ed1 b\u1eaft \u0111\u01b0\u1ee3c anh em c\u00f3 th\u1ec3 \u0111\u00e1nh l\u00f3t c\u1eb7p ngay \u1edf k\u1ef3 quay s\u1eafp t\u1edbi.\u00a0 Ho\u1eb7c \u00e1p d\u1ee5ng ch\u01a1i nu\u00f4i n\u1ebfu con l\u00f4 n\u00e0y c\u00f3 t\u1ea7n su\u1ea5t n\u1ed5 d\u00e0i.<\/p>\n